Handbook of Thermal Analysis and Calorimetry, Volume 5
Description
This is Volume 5 of a Handbook that has been well-received by the thermal analysis and calorimetry community. All chapters in all five volumes are written by international experts in the subject. The fifth volume covers recent advances in techniques and applications that complement the earlier volumes. The chapters refer wherever possible to earlier volumes, but each is complete in itself. The latest recommendations on Nomenclature are also included. Amongst the important new techniques that are covered are micro-thermal analysis, pulsed thermal analysis, fast-scanning calorimetery and the use of quartz-crystal microbalances. There are detailed reviews of heating – stage spectroscopy, the range of electrical techniques available, applications in rheology, catalysis and the study of nanoparticles. The development and application of isoconversional methods of kinetic analysis are described and there are comprehensive chapters on the many facets of thermochemistry and of measuring thermophysical properties. Applications to inorganic and coordination chemistry are reviewed, as are the latest applications in medical and dental sciences, including the importance of polymorphism. The volume concludes with a review of the use and importance of thermal analysis and calorimetry in quality control.
Table of Contents
CHAPTER 1. INTRODUCTION TO RECENT ADVANCES, TECHNIQUES AND APPLICATIONS (Michael E. Brown and Patrick K. Gallagher)
THE HANDBOOK OF THERMAL ANALYSIS AND
CALORIMETRY 1
THE LITERATURE OF THERMAL ANALYSIS AND
CALORIMETRY 2
2.1. Books 2
2.2. Major conferences and their proceedings 3
2.3. Websites 5
NOMENCLATURE 6
RECENT ADVANCES IN TECHNIQUES 6
4.1. Micro-Thermal Analysis 6
4.2. Pulsed thermal analysis 7
4.3. Fast scanning calorimetry 7
ADVANCES IN APPLICATIONS 7
5.1. Quartz-crystal microbalances 7
5.2. Electrical techniques 8
5.3. Heating-stage spectroscopy 8
5.4. Rheology 8
5.5. Catalysis 9
5.6. Nanoparticles 9
KINETICS 9
ADDITIONAL TOPICS 10
7.1. Thermochemistry 10
7.2. Coordination compounds and inorganics 10
7.3. Thermophysical properties 11
7.4. Polymorphism 11
7.5. Medical applications 11
7.6. Dental materials 12
QUALITY CONTROL 12
CHAPTER 2. DEVELOPMENTS IN NOMENCLATURE
(Jean Rouquerol, I. Wadsö, T. Lever and P. Haines)
INTRODUCTION 13
2006 ICTAC NOMENCLATURE OF THERMAL ANALYSIS 14
2.1. Scope 14
2.2. Intent 15
2.3. Definition of the field of Thermal Analysis (TA) 15
2.4. Techniques 15
2.5. Terminology and Glossary 16
2.6. Experimental conditions 22
2.7. Symbols used specifically in Thermal Analysis 22
2.8. Overview and historical matters 23
2.9. Recent Members of the ICTAC Nomenclature Committee 24
COMMENTS ON THE 2006 ICTAC NOMENCLATURE OF
THERMAL ANALYSIS 24
A CONVENIENT NOMENCLATURE FOR CALORIMETERS 28
4.1. Basic representation, criteria and categories 28
4.2. “Passive” adiabatic calorimeters 30
4.3. “Active” adiabatic calorimeters 32
4.4. “Passive” diathermal calorimeters 34
4.5. “Active” diathermal calorimeters 35
OTHER POSSIBLE NOMENCLATURES FOR CALORIMETERS 37
5.1. Nomenclature proposed by Swietoslawski in 1933 37
5.2. Nomenclature proposed by Calvet and Prat in 1956 37
5.3. Nomenclature proposed by Evans in 1969 39
5.4. Nomenclature proposed by Skinner in 1969 39
5.5. Nomenclature proposed by Rouquerol and Laffitte in 1972 40
5.6. Nomenclature proposed by Hemminger and Höhne in 1984 41
5.7. Nomenclature proposed by Rouquerol and Zielenkiewicz in 1986 44
5.8. Nomenclature proposed by Tachoire and Médard in 1994 44
5.9. Nomenclature proposed by Wadsö in 1997 45
5.10. Nomenclature proposed by Hemminger and Särge in 1999 46
5.11. Nomenclature proposed by Hansen in 2001 47
5.12. Nomenclature proposed by Matsuo in 2004 48
5.13. Nomenclature proposed by Zielenkiewicz in 2004 50
CONCLUSIONS 51
REFERENCES 52 – 54
CHAPTER 3. MICRO-THERMAL ANALYSIS AND RELATED TECHNIQUES (Duncan M. Price)
INTRODUCTION 55
SCANNING THERMAL MICROSCOPY (STHM) 57
2.1. Introduction 57
2.2. Instrumentation for SThM 58
2.3. Probe design 59
2.4. Quantitative SThM 61
2.5. Other SThM techniques 66
LOCALISED THERMAL ANALYSIS 67
3.1. Principles 67
3.2. Calibration 68
3.3. Features 69
3.4. Terminology 71
3.5. Applications 71
LOCALISED CHEMICAL ANALYSIS 78
4.1. Introduction 78
4.2. Localised evolved gas analysis 78
4.3. Near-field photothermal spectroscopy 82
4.4. Thermally-assisted micro-sampling 83
CONCLUSIONS 84
REFERENCES 84 – 92
CHAPTER 4. PULSE THERMAL ANALYSIS
(M. Maciejewski and A. Baiker)
INTRODUCTION 93
EXPERIMENTAL 94
CALIBRATION OF SPECTROMETRIC SIGNALS IN
HYPHENATED THERMOANALYTICAL TECHNIQUES 95
3.1. Calibration of gases 95
3.2. Verification of the calibration 98
3.3. Calibration of liquids 99
QUANTIFICATION OF THE SPECTROMETRIC SIGNALS
IN A TA-MS-FTIR SYSTEM 101
4.1. Determination of the intrinsic fragmentation in a TA-MS system 101
4.2. Application of PulseTA® for quantification of gas-solid reactions 104
INJECTION OF A GAS WHICH REACTS WITH THE SOLID 112
5.1. Investigations of the reduction and oxidation of solids 112
5.2. Investigation of the redox behaviour of solids: reduction and re-oxidation of CeO2 116
5.3. Investigation of gas-solid reactions 118
5.4. Miscellaneous applications 123
INJECTION OF A GAS WHICH ADSORBS ON THE SOLID 124
6.1. Adsorption of ammonia on HZMS-5 zeolite 124
6.2. Investigation of the adsorption and desorption of NH3 on a titania-silica aerogel 125
6.3. Investigation of adsorption combined with gas-solid reaction 126
6.4. Miscellaneous applications 129
CONCLUSIONS 129
REFERENCES 130 – 132
CHAPTER 5. THE QUARTZ CRYSTAL MICROBALANCE
(Allan L. Smith)
HIGH SENSITIVITY BALANCES: THEIR ROLE IN THERMAL
ANALYSIS AND CALORIMETRY 133
EARLY HISTORY OF THE QUARTZ CRYSTAL
MICROBALANCE 134
THE LITERATURE OF THERMAL ANALYSIS AND OF THE
QUARTZ CRYSTAL MICROBALANCE 135
PRINCIPLES OF OPERATION OF THE QUARTZ CRYSTAL
MICROBALANCE (QCM) 142
DETECTION ELECTRONICS 147
5.1. Simple QCM driving circuits 147
5.2. Frequency and damping measurements 148
5.3. Impedance analysis 148
IS THE TRANSVERSE SHEAR MODE RESONATOR A TRUE
MICROBALANCE? 148
PRACTICAL DETAILS 150
7.1. Calibration 150
7.2. Comparison of gravimetric and Sauerbrey masses 151
7.3. Sample Preparation 152
CHEMICAL AND BIOLOGICAL APPLICATIONS OF
THE QCM 152
8.1. Film-thickness monitors in vacuum deposition 152
8.2. The metal/solution interface in electrochemical cells 153
8.3. Faraday Society Discussion No. 107, 1997 154
8.4. Determination of shear and loss modulus at QCM frequencies 155
8.5. Chemical sensors and biosensors 156
8.6. Biological surface science 158
SENSORS 159
9.1. Acoustic microsensors – the challenge behind microgravimetry 159
9.2. Piezoelectric sensors 159
THE QUARTZ CRYSTAL MICROBALANCE/HEAT
CONDUCTION CALORIMETER 161
10.1. Introduction 161
10.2. Beginnings of QCM/HCC 161
10.3. Development of QCM/HCC 163
10.4. Biological applications 164
10.5. The Masscal Scientific Instruments G1 Microbalance/Calorimeter 164
10.6. Recent applications 165
10.7. Conclusion 165
REFERENCES 166 – 170
CHAPTER 6. HEATING STAGE SPECTROSCOPY: INFRARED, RAMAN, ENERGY DISPERSIVE X-RAY AND X-RAY PHOTOELECTRON SPECTROSCOPY (Ray L. Frost and J. Theo Kloprogge)
INFRARED EMISSION SPECTROSCOPY 171
1.1. Introduction 171
1.2. The theory behind infrared emission spectroscopy (IES) 173
1.3. Infrared emission spectroscopy of alunite 179
HEATING STAGE RAMAN SPECTROSCOPY 182
2.1 Heating stage Raman spectroscopy of weddellite 186
THERMAL STUDIES OF MATERIALS USING HEATING
AND COOLING STAGE SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE X-RAY
ANALYSIS 188
3.1. Apparatus 188
3.2. Thermal decomposition of weddelite by heating stage SEM
and infrared emission spectroscopy (IES) 191
3.3. Sublimation of urea CH4N2O 196
3.4. Wetting/drying of montmorillonite 198
HEATING STAGE PHOTOELECTRON SPECTROSCOPY
(XPS) 200
4.1. Dehydration of calcium oxalate monohydrate CaC2O4.H2O 201
4.2. Calcination of titania/PVA expanded hectorite 202
CONCLUSIONS 206
ACKNOWLEDGEMENTS 206
REFERENCES 206 – 208
CHAPTER 7. ELECTRICAL TECHNIQUES(Madalena Dionísio and João F. Mano)
INTRODUCTION 209
1.1. Dielectric materials in the presence of static electric fields 209
1.2. Application of alternating electric fields 211
MEASUREMENT TECHNIQUES 216
2.1. Introduction 216
2.2. Equivalent circuits 217
2.3. Time-domain measurements 219
2.4. Cells 220
2.5. Temperature calibration in dielectric and electrical
measurements 222
DIELECTRIC SPECTROSCOPY IN MODEL SYSTEMS AND
ASSIGNMENT OF MOLECULAR MOTIONS 224
3.1 Sub-glass mobility 225
3.2. – Relaxation 231
3.3. Crossover region 235
3.4. Low-frequency processes 240
3.5. Dielectric response in semi-crystalline polymers 247
THERMALLY STIMULATED DEPOLARIZATION
CURRENTS 253
CONCLUSIONS 259
REFERENCES 260 – 268
CHAPTER 8. BENEFITS AND POTENTIALS OF HIGH PERFORMANCE DIFFERENTIAL SCANNING CALORIMETRY (HPer DSC)
(Vincent B.F. Mathot, Geert Vanden Poel and Thijs F.J. Pijpers)
INTRODUCTION 269
MAJOR CHALLENGES 270
2.1. Introduction 270
2.2. Measuring under realistic conditions 271
2.3. The study of metastability and reorganization 271
HIGH-SPEED CALORIMETRY 276
3.1. Instrumental aspects 276
3.2. Temperature calibration 277
3.3. Constancy of the scan rate 282
3.4. Linking experiment with practice and processing 284
3.5. Quantitative measurements 291
3.6. Higher sensitivity; working on minute amounts of material 293
CONCLUSIONS 295
REFERENCES 295 – 298
CHAPTER 9. DYNAMIC PULSE CALORIMETRY – THERMOPHYSICAL PROPERTIES OF SOLID AND LIQUID METALS AND ALLOYS
(C. Cagran and G. Pottlacher)
INTRODUCTION – THERMOPHYSICAL PROPERTIES 299
DYNAMIC PULSE CALORIMETRY (PULSE-HEATING) 301
2.1. Historical development and brief description of pulse-heating 301
2.2. Classification of pulse-heating systems and existing systems 302
EXPERIMENTAL DESCRIPTION 304
3.1. General information about pulse-heating 304
3.2. Experiment – Basic electrical quantities 308
3.3. Experiment – Derived thermophysical properties 310
3.4. Experiment – Levitation 324
EXPERIMENTAL DATA – IRIDIUM 325
RECENTLY DEVELOPED (SPECIAL) APPLICATIONS OF PULSE
CALORIMETRY 329
5.1. Extended temperature range by a pulse-calorimeter/DSC combination 329
5.2. Mechanical properties with a Kolsky bar apparatus 330
5.3. Pulse-heating/ laser flash combination 331
5.4. Pulse-heating microcalorimetry 332
UNCERTAINTIES 333
FURTHER READING 333
CONCLUSIONS 334
ACKNOWLEDGEMENTS 334
REFERENCES 335 – 342
CHAPTER 10. SURFACE PROPERTIES OF NANOPARTICLES
(Piotr Staszczuk)
INTRODUCTION 343
1.1. Nanotechnology and nanostructures 343
1.2. Total (energetic and structural) heterogeneity of surfaces 345
1.3. Fractal dimensions of nanoparticles 348
PHYSICOCHEMICAL PROPERTIES OF SELECTED
NANOMATERIALS 349
2.1. Carbon nanotubes 349
2.2. Montmorillonites 349
2.3. Zeolites 350
2.4. Superconductor materials 350
TECHNIQUES USED 351
3.1. Q-TG thermogravimetry 351
3.2. Surface adsorption 356
3.3. Porosimetry 356
3.4. Calculation of fractal dimensions from sorptometry and
porosimetry data 357
3.5. Atomic force microscopy, (AFM), Scanning electron microscopy (SEM)
and Energy dispersive X-ray spectroscopy (EDX) 358
EXAMPLES OF STUDIES ON SELECTED MATERIALS 359
4.1. Carbon nanotubes 359
4.2. Montmorillonites 370
4.3. Aluminas 371
4.4. Fractal dimensions 381
SUMMARY 382
REFERENCES 384 – 386
CHAPTER 11. HETEROGENEOUS CATALYSIS ON SOLIDS
(Ljiljana Damjanovic and Aline Auroux)
INTRODUCTION 387
EXPERIMENTAL 388
2.1. Some limitations of the technique for characterizing catalytic sites 394
2.2. Probe molecules most commonly used to characterize catalytic surfaces 396
2.3. The role and the influence of the probe molecule in determining
adsorption heats 398
ACID-BASE PROPERTIES OF CATALYST SURFACES 401
3.1. Zeolites and related materials 401
3.2. Bulk, doped, supported and mixed oxides 408
REDOX PROPERTIES OF CATALYST SURFACES 421
4.1. Metals and supported metals 421
4.2. Oxides and supported oxides 424
CORRELATION WITH CATALYTIC ACTIVITY 426
CONCLUSIONS 430
REFERENCES 431 – 438
CHAPTER 12. COORDINATION COMPOUNDS AND INORGANICS
(Stefano Materazzi )
INTRODUCTION 439
REVIEWS 440
USE OF COORDINATION COMPOUNDS AND INORGANICS
TO DEVELOP NEW METHODS 441
INORGANICS 445
4.1. Alloys 445
4.2. Arsenates 449
4.3. Borates 450
4.4. Carbonates 451
4.5. Chromates 453
4.6. Iodides 453
4.7. Nitrates and Nitrites 454
4.8. Oxalates 456
4.9. Oxides 460
4.10. Perchlorates 463
4.11. Phosphates 464
4.12. Stannates 465
4.13. Sulfides, Sulfites and Sulfates 466
METAL-ORGANIC FRAMEWORKS: COORDINATION
POLYMERS 469
5.1. Introduction 469
5.2. Bismuth 469
5.3. Cadmium 469
5.4. Cobalt 470
5.5. Copper 472
5.6. Iron 477
5.7. Lanthanides 478
5.8. Lead 482
5.9. Lithium 483
5.10. Magnesium 484
5.11. Manganese 485
5.12. Nickel 486
5.13. Palladium 488
5.14. Silver 488
5.15. Sodium 490
5.16. Strontium 490
5.17. Zinc 491
REFERENCES 493 – 502
CHAPTER 13. ISOCONVERSIONAL KINETICS
(Sergey Vyazovkin)
INTRODUCTION 503
ISOCONVERSIONAL METHODS 504
CONCEPT OF VARIABLE ACTIVATION ENERGY 508
KINETICS OF PHYSICAL PROCESSES 512
4.1. Crystallization 512
4.2. Melt and glass crystallization of polymers 516
4.3. Second-order transitions 518
4.4. Glass transition 519
KINETICS OF CHEMICAL PROCESSES 522
5.1. Reversible decompositions 522
5.2. Thermal and thermo-oxidative degradation of polymers 525
5.3. Crosslinking 526
ISOCONVERSIONAL METHODS AND THE KINETIC TRIPLET 529
6.1. Is it really needed? 529
6.2. Isoconversional kinetic predictions 529
6.3. Evaluating the pre-exponential factor and the reaction model 532
CONCLUSIONS 534
REFERENCES 534 – 538
CHAPTER 14. THERMOCHEMISTRY
(M.V. Roux and M. Temprado)
INTRODUCTION 539
1.1. The objectives of thermochemistry 539
1.2. Short historical introduction 541
EXPERIMENTAL DETERMINATION OF THE ENTHALPIES
OF FORMATION OF ORGANIC COMPOUNDS 542
2.1. Introduction 542
2.2. Combustion calorimetry 542
2.3. Reaction calorimetry 550
2.4. Thermochemistry of phase changes 551
2.5. Additional techniques 554
REFERENCE MATERIALS 557
THERMOCHEMICAL DATA BASES FOR ORGANIC
COMPOUNDS 558
RECENT DEVELOPMENTS IN EXPERIMENTAL TECHNIQUES 559
5.1. Combustion calorimetry 559
5.2. Enthalpies of sublimation and vaporization 560
COMPUTATIONAL THERMOCHEMISTRY 561
THERMOCHEMISTRY AS A POWERFUL TOOL TO SOLVE
ACTUAL CHEMICAL PROBLEMS 562
7.1. Thermochemistry of cyclobutadiene: Enthalpy of formation, ring
strain, and anti-aromaticity 562
7.2. Thermochemistry of cubane and cuneane 563
7.3. Enthalpy of formation of Buckminsterfullerene, C60 563
7.4. Steric, estereolectronic and electrostatic interactios in oxanes,
thianes and sulfone and sulfoxide derivatives 564
7.5. Keto-enol tautomerism and enthalpy of mixing between tautomers
of acetylacetone 565
7.6. Radical generation by using organometallic complexes of
Group 6 metals 566
7.7. Application to biochemical systems 566
7.8. Thermochemistry of reactions in gas phase for compounds with
important implications as catalysts. 566
CONCLUSIONS 567
REFERENCES 567 – 578
CHAPTER 15. THERMAL ANALYSIS AND RHEOLOGY(Mustafa Versan Kok)
INTRODUCTION 579
PARAFFIN WAXES 580
EXPERIMENTAL TECHNIQUES 581
3.1. Introduction 581
3.2. Differential scanning calorimetry (DSC) 582
3.3. Thermomicroscopy and rheology 584
APPLICATIONS 584
CONCLUSIONS 595
REFERENCES 595 – 596
CHAPTER 16. POLYMORPHISM(Mino R. Caira)
INTRODUCTION 597
RECENT DEVELOPMENTS IN POLYMORPHIC RESEARCH 599
2.1. Introduction 599
THERMAL ANALYSIS IN STUDIES OF CRYSTAL
POLYMORPHISM 606
3.1. Introduction 606
RECENT STUDIES 611
4.1. Characterization of polymorphs and polymorphic transformations 611
4.2. Characterization of solvates and desolvation processes 621
CONCLUSIONS 626
ACKNOWLEDGEMENTS 626
REFERENCES 626 – 630
CHAPTER 17. DENTAL MATERIALS(W.A. Brantley)
INTRODUCTION 631
NICKEL-TITANIUM ALLOYS IN DENTISTRY 631
2.1. Metallurgy background 631
2.2. Nickel-titanium endodontic instruments 632
2.3. Nickel-titanium orthodontic wires 641
DENTAL POLYMER MATERIALS 647
3.1. Silicone maxillofacial materials 647
3.2. Elastomeric impression materials 650
3.3. Orthodontic elastomeric modules 654
3.4. Resin composites and other dental polymers 656
ACKNOWLEDGMENTS 658
REFERENCES 658 – 662
CHAPTER 18. MEDICAL APPLICATIONS OF THERMAL METHODS
(Beverley D. Glass)
INTRODUCTION 663
APPLICATION TO PENETRATION OF DRUGS INTO THE SKIN 664
2.1. Introduction 664
2.2. Thermoanalytical techniques and the skin 665
2.3. Thermoanalytical techniques and drug penetration (penetration enhancers) into the skin 668
APPLICATION TO DRUG DELIVERY 675
3.1. Introduction 675
3.2. Thermoanalytical techniques used in drug delivery 675
APPLICATION TO IMPLANTS 677
4.1. Introduction 677
4.2. Thermoanalytical techniques used in implants 677
APPLICATIONS TO PROSTHETICS 685
5.1. Introduction 685
5.2. Bioprostheses used in heart valves 685
5.3. Bioprostheses used in aortic valves 686
MISCELLANEOUS APPLICATIONS 687
6.1. DSC studies on albumins 687
6.2. DSC studies on the human intervertebral disc 688
6.3. DSC studies of human skin from patients with diabetes mellitus (DM) 689
6.4. DSC studies on cartilage destruction by septic arthritis 689
6.5. DSC studies on the effect of tetracaine on erythrocyte membranes 689
6.6. DSC studies on modified poly(urethaneurea) blood sacs 690
CONCLUSIONS 690
REFERENCES 691 – 694
CHAPTER 19. QUALITY CONTROL
(Donald J. Burlett)
INTRODUCTION 695
GENERAL CONSIDERATIONS 696
POLYMERS 698
ORGANIC CHEMICALS 704
PHARMACEUTICALS 709
FOODS 715
INORGANIC CHEMICALS 722
METALS 724
OTHER REFERENCES 728
FUTURE OPPORTUNITIES 729
REFERENCES 729 – 732